456. 132 Pattern
Given a sequence of n integers a1, a2, ..., an, a 132 pattern is a subsequence ai, aj, ak such that i < j < k and ai
< ak < aj. Design an algorithm that takes a list of n numbers as input and checks whether there is a 132 pattern in
the list.
Note: n will be less than 15,000.
Example 1:
Input: [1, 2, 3, 4]
Output: False
Explanation: There is no 132 pattern in the sequence.
Example 2:
Input: [3, 1, 4, 2]
Output: True
Explanation: There is a 132 pattern in the sequence: [1, 4, 2].
Example 3:
Input: [-1, 3, 2, 0]
Output: True
Explanation: There are three 132 patterns in the sequence: [-1, 3, 2], [-1, 3, 0] and [-1, 2, 0].
- Monotonic Stack
- k is ak, is “2” in “132”
- elements in the stack are valid “3” in “132”
- the while loop increases both “3” and “2”
public boolean find132pattern(int[] nums) {
Stack<Integer> stack = new Stack<>();
int k = Integer.MIN_VALUE;
for(int i = nums.length-1; i >= 0; i--) {
int v = nums[i];
if(v < k) return true;
while(!stack.isEmpty() && v > stack.peek()) {
k = stack.pop(); // this is a better ak < aj pair
}
stack.push(v);
}
return false;
}
- TreeSet
class Solution {
public boolean find132pattern(int[] nums) {
if(nums.length < 3) return false;
int[] mins = new int[nums.length];
mins[1] = nums[0];
for(int i = 2; i < nums.length; i++)
mins[i] = Math.min(nums[i-1], mins[i-1]);
TreeSet<Integer> set = new TreeSet<>();
for(int i = nums.length-1; i >= 1; i--) {
int min = mins[i];
int max = nums[i];
if(min < max && !set.subSet(min, false, max, false).isEmpty()) {
return true;
}
set.add(max);
}
return false;
}
}