123. Best Time to Buy and Sell Stock IV
123. Best Time to Buy and Sell Stock IV
Say you have an array for which the i-th element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy
again).
Example 1:
Input: [2,4,1], k = 2
Output: 2
Explanation: Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.
Example 2:
Input: [3,2,6,5,0,3], k = 2
Output: 7
Explanation: Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4.
Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
- dp[i]
public int maxProfit(int K, int[] prices) {
if(K > prices.length / 2) {
return greedy(prices);
}
int[] buy = new int[K+1], sell = new int[K+1];
Arrays.fill(buy, Integer.MIN_VALUE);
for(int i = 0; i < prices.length; i++) {
for(int j = 1; j <= K; j++) {
buy[j] = Math.max(buy[j], sell[j-1]-prices[i]);
sell[j] = Math.max(sell[j], buy[j]+prices[i]);
}
}
return sell[K];
}
public int greedy(int[] prices) {
int result = 0;
for(int i = 1; i < prices.length; i++) {
if(prices[i]-prices[i-1] > 0) {
result += prices[i]-prices[i-1];
}
}
return result;
}
- dp[i][j]
public int maxProfit(int K, int[] prices) {
if(K > prices.length / 2) {
return greedy(prices);
}
if(prices.length == 0) return 0;
int[][] dp = new int[K+1][prices.length];
for(int i = 1; i <= K; i++) {
int min = prices[0];
for(int j = 1; j < prices.length; j++) {
min = Math.min(min, prices[j]-dp[i-1][j-1]);
dp[i][j] = Math.max(dp[i][j-1], prices[j]-min);
}
}
return dp[K][prices.length-1];
}