87. Scramble String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings
recursively.
Below is one possible representation of s1 = "great":
great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".
rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that "rgeat" is a scrambled string of "great".
Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".
rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that "rgtae" is a scrambled string of "great".
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
Example 1:
Input: s1 = "great", s2 = "rgeat"
Output: true
Example 2:
Input: s1 = "abcde", s2 = "caebd"
Output: false
Here is a iterative DP solution https://leetcode.com/problems/scramble-string/discuss/29396/Simple-iterative-DP-Java-solution-with-explanation
for some 1 <= q < k we have: F(i, j, k) = (F(i, j, q) AND F(i + q, j + q, k - q)) OR (F(i, j + k - q, q) AND F(i + q, j, k - q))
- Recursive
class Solution {
public boolean isScramble(String s1, String s2) {
if(s1.length() != s2.length()) return false;
if(s1.equals(s2)) return true;
if(s1.length() == 1) return false;
int[] cnt = new int[26];
for(char c : s1.toCharArray()) cnt[c-'a']++;
for(char c : s2.toCharArray()) cnt[c-'a']--;
for(int i : cnt) if(i != 0) return false;
for(int i = 1; i < s1.length(); i++) {
String s11 = s1.substring(0, i), s12 = s1.substring(i);
String s21 = s2.substring(0, i), s22 = s2.substring(i);
boolean r1 = isScramble(s11, s21) && isScramble(s12, s22);
if(r1) return true;
s21 = s2.substring(0, s1.length()-i);
s22 = s2.substring(s1.length()-i);
boolean r2 = isScramble(s11, s22) && isScramble(s12, s21);
if(r2) return true;
}
return false;
}
}