240. Search a 2D Matrix II
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.
Example:
Consider the following matrix:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5, return true.
Given target = 20, return false.
- Divide And Conquer
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix == null || matrix.length == 0 || matrix[0] == null || matrix[0].length == 0) return false;
return divide(matrix, target, 0, matrix[0].length-1, 0, matrix.length-1);
}
public boolean divide(int[][] matrix, int target, int c1, int c2, int r1, int r2) {
if(c2 < c1 || r2 < r1) return false;
int c = c1 + (c2-c1) / 2, r = r1 + (r2-r1) / 2;
if(matrix[r][c] == target) return true;
else if(matrix[r][c] > target) {
return divide(matrix, target, c1, c-1, r1, r-1) || divide(matrix, target, c, c2, r1, r-1) || divide(matrix, target, c1, c-1, r, r2);
} else {
return divide(matrix, target, c+1, c2, r+1, r2) || divide(matrix, target, c+1, c2, r1, r) || divide(matrix, target, c1, c, r+1, r2);
}
}
- TwoPointers
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix.length == 0 || matrix[0].length == 0) return false;
int i = 0, j = matrix[0].length-1;
while(i < matrix.length && j >= 0) {
if(matrix[i][j] == target) return true;
else if(matrix[i][j] < target) i++;
else j--;
}
return false;
}